

PHARMACOLOGICAL AND THERAPEUTIC POTENTIAL OF ALOE SPECIES: A SYSTEMATIC REVIEW OF BIOACTIVE ALKALOIDS AND CLINICAL APPLICATIONS

Annarpurna Sarkar¹, Manisha P. Gajendragadkar²

¹ PG Scholar, Department of Homoeopathic Pharmacy, Bharati Vidyapeeth (Deemed To Be University) Homoeopathic Medical College, Pune.

² Associate Professor, Department of Homoeopathic Pharmacy, Bharati Vidyapeeth (Deemed To Be University), Homoeopathic Medical College, Pune. Email: manishagajendragadkar@bhartividyapeeth.edu
ORCID:0000-0003-0927-4326

***Corresponding author:**

Email: manishagajendragadkar@bhartividyapeeth.edu

ABSTRACT

Background: Members of the genus Aloe are well known in traditional and modern medicine because of their health-promoting effects. Different bioactive alkaloids, including aloin, aloe-emodin, acemannan, and barbaloin were found to be responsible for Aloe's beneficial uses. This review systematically analyses the therapeutic effects of compounds derived from Aloe, with a focus on their impact at the level of the physiological system, and offering a chronologic view of the importance of the use of preparations derived from Aloe. The purpose of this review article is to discuss about the phytochemical composition, pharmacological attributes, therapeutic uses of Aloe species. The Aloe research also looks at how Aloe has progressed in research, with great emphasis put on Aloe's old.

Methods: A systematic review of the literature was performed according to the PRSIMA statement. Journal articles published in peer-reviewed journals were obtained from the PubMed, SCOPUS, Web of Science, Google Scholar, and Science Direct. The inclusion criteria covered papers on Aloe phytochemistry, pharmacological properties, and applications in therapy, and the exclusion criteria were non-peer-reviewed papers, and non-medicinal uses of Aloe.

Results: Aloe species have been reported to possess pharmacological properties such as anti-inflammatory, antimicrobial, anti-oxidant, anti-diabetic, hepatoprotective, and wound healing activities. Chronological examination shows an unbroken thread of study on the medicinal potential of Aloe, with early works focusing on its laxative and dermatological capacities, and more recent studies supporting its effects on metabolism and neurological health..

Conclusion: Aloe species have been known for the wide therapeutic application as the potential source of bioactive compounds. But differences in the phytochemical composition between them (including how they are grown) mean that more research is needed as there have been few human trials. Future studies should focus on optimizing Aloe formulations, enhancing bioavailability through nanotechnology, and validating its clinical efficacy for integration into evidence-based medicine.

Keywords: Aloe species, bioactive alkaloids, pharmacological properties, antioxidant, anti-inflammatory.

1. INTRODUCTION

Aloe socotrina Aloe perryi is an indigenous medicine extracted from the island of Socotra in Yemen. It is a member of the Asphodelaceae, a family within the order Asparagales, and is one of several species of Aloe. History *P. cabreriae* has a long history of importance for the community, primarily as a source of a resinous exudates used in traditional medicine and homeopathy. It has been considered as synonym of Aloe vera var. perryi, but is known for its distinctive chemistry and habitat specificity. Distribution: Aloe socotrina is indigenous to Socotra, an island in the Arabian Sea, growing in arid, rocky locations with little precipitation and high temperatures. For its value in Medicine, it has been further naturalised in the Arabian peninsula and Africa, especially under the same, dry climate. The plant has thick, fleshy leaves that contain the bitter, anthraquinone rich latex from which the plant derives its therapeutic properties, notably as a laxative and wound healer and anti-inflammatory agent. Historically, the dried resin of Aloe socotrina was a valuable commodity, traded across Europe, the Middle East, and Asia, and incorporated into various traditional medicinal systems.

Aloe socotrina, also known as Aloe perryi, is a plant that has long been used in both traditional and medicinal settings. Its latex, which is extracted from the leaves, contains anthraquinones such as aloin, aloe-emodin, and barbaloin, which have strong laxative, anti-inflammatory, and antibacterial properties. Aloin, aloe-emodin, and barbaloin are among the anthraquinones found in its latex, which is collected from the leaves and has potent laxative, anti-inflammatory, and antibacterial qualities. Since ancient times, the gel found inside the leaves has been traded as a valuable medicinal product throughout Europe, the Middle East, and Africa. It is administered topically to heal wounds, burns, and ulcers. Aloe socotrina is used in homeopathy to treat gastrointestinal conditions such as hemorrhoids, portal congestion, irritable bowel syndrome, and persistent diarrhea. Additionally, it is utilized to treat venous congestion diseases, liver dysfunction-related migraines, and slow digestion. Aloe socotrina is a herb with hepatoprotective, anti-inflammatory, and laxative qualities that balance pitta, according to Ayurvedic medicine.

In addition to treating skin disorders, liver issues, irregular periods, and constipation, it aids in digestion and detoxification. Aloe is used as a *Mushil* (purgative) and *Muawiyah* (tonic) in Unani medicine to strengthen internal organs, regulate bile production, and purify the body. In Traditional Chinese Medicine (TCM), aloe is classified as a bitter-cold herb that is used to eliminate heat, regulate bowel movements, and cleanse the body. All things considered, Aloe socotrina remains a robust and versatile natural remedy with significant pharmacological value and room for further research in integrated medicine and phytotherapy. With an emphasis on potential uses in both conventional and contemporary healthcare systems, the study aims to explore the phytochemical makeup and therapeutic uses of Aloe species. Phytochemical profiles, pharmacological characteristics, bioactive differences between wild and farmed Aloe species, homeopathy, Ayurveda, Unani, and allopathy, as well as research gaps, are some of the goals.

Aloe species include a variety of compounds that are thought to have important therapeutic benefits for a variety of therapeutic systems. The medicinal efficacy of wild and cultivated species is influenced by differences in their phytochemical composition. Aloe extracts' clinically meaningful pharmacological benefits lend credence to its application in evidence-based treatment.

A systematic examination of aloe's phytochemistry and therapeutic uses will give a comprehensive understanding of the plant's therapeutic potential as well as the areas that need more study. The study aims to bridge the gap between traditional knowledge and scientific validation of aloe's medicinal properties by identifying the most bioactive compounds that contribute to aloe's pharmacological effects, illuminating the differences in phytochemical composition among aloe species, and identifying research gaps for future clinical trials and pharmaceutical advancements in aloe-based medicine.

2. METHODOLOGY

2.1. Study Design

This study employs a systematic review methodology to evaluate the phytochemical composition, pharmacological properties, and therapeutic applications of Aloe species in traditional and modern healthcare systems. The study conforms to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure an open, repeatable, and evidence-based process.

2.2 Data Sources and Search Strategy

A comprehensive literature search was conducted across the following scientific databases:

PubMed, Scopus, Web of Science, Google Scholar, ScienceDirect, ResearchGate

Search terms included a combination of Medical Subject Headings (MeSH) and free-text keywords such as:

- *Aloe species, Aloe socotrina, Aloe vera, Phytochemicals, Anthraquinones, Aloin, Aloe-emodin, Traditional medicine, Homeopathy, Ayurveda, Unani, Traditional Chinese Medicine (TCM), Pharmacological properties, Antioxidant, Anti-inflammatory, Antimicrobial, Wound healing, Cancer, Diabetes, Liver protection.*

Boolean operators (AND, OR) were applied to refine search results, ensuring broad yet targeted inclusion of relevant literature. Manual screening of bibliographies from selected articles was also conducted to identify additional relevant studies.

2.3 Inclusion and Exclusion Criteria

2.3.1 Inclusion Criteria:

- Peer-reviewed journal articles published in English.
- Studies on phytochemistry, pharmacological properties, and therapeutic applications of Aloe species.
- Experimental studies, randomized controlled trials (RCTs), cohort studies, and case-control studies.
- Studies reporting bioactive compounds, traditional medicinal uses, and mechanisms of action of Aloe species.

ISSN: 2208-2093

2.3.2 Exclusion Criteria:

- Non-peer-reviewed articles, opinion pieces, and commentaries.
- Studies published in languages other than English.
- Studies focusing on non-medicinal uses of Aloe species (e.g., agriculture, cosmetics).
- Articles lacking phytochemical or pharmacological analysis.
- Duplicate studies and reviews without primary research data.

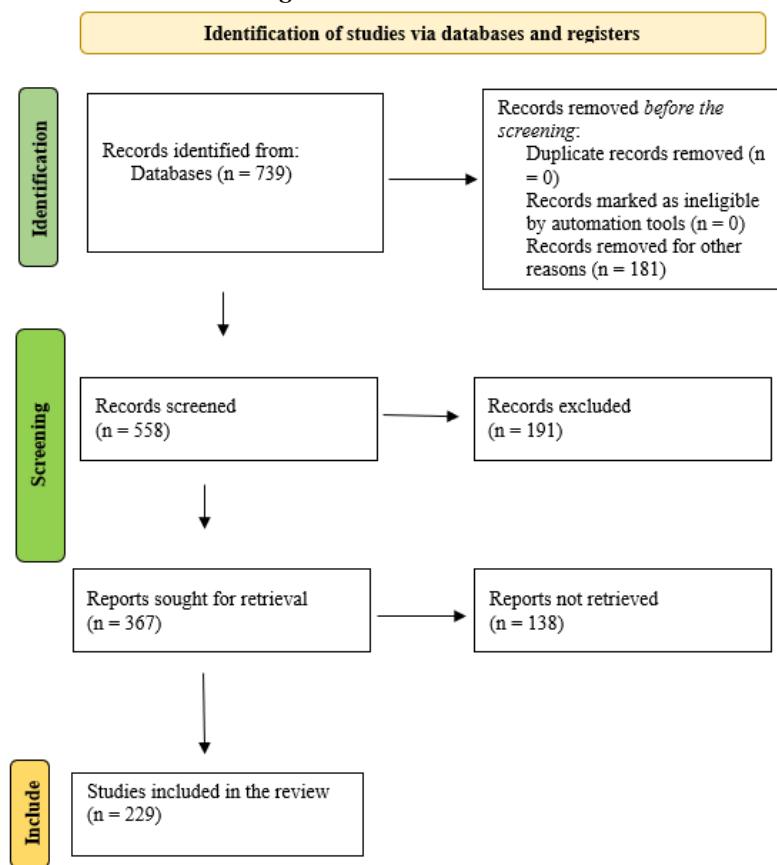
2.4 Data Extraction and Analysis

Two independent reviewers extracted data using a standardized data extraction form. Extracted data included:

1. **Study Characteristics:** Author, year, study design, sample size.
2. **Phytochemical Profile:** Identified compounds (e.g., aloin, aloe-emodin, barbaloin, acemannan).
3. **Pharmacological Effects:** Reported bioactivities (e.g., antioxidant, anti-inflammatory, antimicrobial, wound healing).
4. **Therapeutic Applications:** Traditional and modern medical uses.
5. **Comparison of Wild vs. Cultivated Aloe Species:** Differences in bioactive composition.
6. **Gaps in Research:** Areas needing further scientific validation.

2.5 Data Synthesis and Interpretation

- Thematic analysis was employed to categorize Aloe species' pharmacological effects (e.g., antioxidant, antimicrobial, anticancer).
- Comparative analysis was conducted between wild and cultivated Aloe species to evaluate differences in phytochemical content.


2.6 Ethical Considerations

This study is a systematic review based on publicly available research; therefore, no ethical approval was required. However, ethical principles such as scientific integrity, accurate data representation, and adherence to reporting standards were strictly maintained.

3. RESULT

Table 1: Data Search and Inclusion and Exclusion Result

DATA SEARCH							
SI No.	Name of the Database	Total publication	Include	Exclude			
				Duplicate	Irreverent	Review	Language other than English
1	Pub med	336	111	0	86	65	0
2	Scopus	0	0	0	0	0	0
3	Research gate	0	0	0	0	0	0
4	Web of Science	0	0	0	0	0	0
5	Science Direct	0	0	0	0	0	0
6	Google Scholar	403	118	0	105	73	0
Total		739	229	0	191	138	0
							181

Figure-1: PRISMA flow Chart

ISSN: 2208-2093

Table 2: Type of Study in The Light of The Number

TYPE OF STUDY IN THE LIGHT OF THE NUMBER		Number of Papers
SLNO	Category	
1	Anti-acne	2
2	Anti-bacterial	27
3	Anti-cancer	17
4	Anti-diabetic	10
5	Anti-fungal	4
6	Anti-fibrotic	2
7	Anti-aggregatory	2
8	Anti-inflammatory	17
9	Anti-malarial	1
10	Anti-obesity	1
11	Anti-oxidant	30
12	Antiviral	2
13	Bone regeneration	1
14	Cardioprotective	1
15	Detoxification	3
16	Drug delivery	16
17	Enhancement of aloin content	2
18	Gastrointestinal health improvement	9
19	Growth enhancement	3
20	Hepatic Effect	12
21	Immune enhancement	3
22	Neuroprotection	3
23	Oral	4
24	Sperm protection	2
25	Skin treatment	5
26	Wound healing	15
Total		229

Of the numerous species of aloe that have been shown to offer a variety of medicinal benefits, its antioxidant activity has been the most thoroughly researched. Aloe may be used to treat infections, inflammatory conditions, and cancer because of its significant antibacterial, anti-inflammatory, and anti-cancer qualities. Additionally, it possesses hepatoprotective and anti-diabetic properties that point to a potential function in controlling liver and metabolic health.

Pharmaceuticals' therapeutic efficacy and bioavailability are enhanced by aloe's capacity to transport molecules. Other chemical characteristics include purging, immunological, antifungal, and brain-protective effects. In dermatology, aloe is used for sperm protection, dental health, acne prevention, and skin care. Its anti-malarial, anti-obesity, bone-regeneration, and cardioprotective properties point to potential novel uses. Studies on improving the composition of aloin show continuous attempts to maximize the effectiveness of

ALKALOID AND ITS RELEVANT STUDY		
Sl no	Alkaloid	Number of Papers
1	Not specified	76
2	-	16
3	<i>Aloe-emodin</i>	10
4	<i>Aloin</i>	9
5	<i>Acemannan</i>	8
6	<i>Aloesin</i>	5
7	<i>Aloe vera extract</i>	5
8	<i>Barbaloin</i>	3
9	<i>Aloin A & B</i>	2
10	<i>Aloin, Aloesin</i>	2
11	<i>Chrysophanol</i>	2
12	<i>Rhein</i>	2
13	<i>Aloesin, Barbaloin</i>	2
14	<i>Aloin, Aloe-emodin</i>	2
15	<i>Aloe polysaccharides</i>	2
16	<i>Combination of Aloe vera & Cinnamon oil</i>	2
17	<i>Aloin, Barbaloin</i>	2
18	<i>Aloin, Emodin</i>	2
19	<i>Aloin, Rhein</i>	2
20	<i>Aloin, Aloe-gel</i>	2
21	<i>Aloin, Chrysophanol</i>	2
22	<i>Aloin, Aloe-emodin, Aloesin</i>	2
23	<i>Combination of Aloe vera & Moringa oleifera</i>	1
24	<i>Basil & Aloe alkaloids</i>	1
25	<i>Aloin, Aloesin, Aloe-gel</i>	1
26	<i>Aloesin Derivatives</i>	1
27	<i>Allantoin</i>	1

Table 3: Alkaloid And Its Relevant Study

The alkaloid composition of Aloe species is rich in bioactive compounds, aiding in its medicinal properties. Aloe-emodin, aloin, and acemannan are being thoroughly examined for their anti-inflammatory, antimicrobial, and wound-healing properties. Other bioactive compounds include aloesin, barbaloin, and aloe vera extract, which are associated with skin health, metabolic regulation, and immune modulation. Synergistic interactions between multiple alkaloids suggest therapeutic potential in oxidative stress, anti-cancer activity, and gastrointestinal health. Aloe polysaccharides and aloesin Its pharmacological flexibility is further shown by derivatives. Aloe vera's complex phytochemical makeup is highlighted by the presence of Aloin A & B and multiple alkaloids in combinations. This review demonstrates Aloe's rich alkaloid diversity and pharmacological relevance, supporting its therapeutic applications in dermatology, metabolic health, immune enhancement, and drug formulation.

Table 4: Alkaloids with Their Relevant Therapeutic Value

ALKALOID WITH THEIR RELEVANT THERAPEUTIC VALUE			
Sl no	Alkaloid Name	Therapeutic Value	Type of Diseases
1	<i>Acemannan</i>	Anti-acne, Immune enhancement, Immune stimulant	Acne, Macrophage activation, Footh extraction healing
2	<i>Active Aloe principles</i>	Antitumor & antioxidant	Cancer
3	<i>Allantoin</i>	Wound healing & anti-inflammatory	Otolaryngological conditions
4	<i>Aloe & Ocimum alkaloids</i>	Gingivitis treatment	Oral infections
5	<i>Aloe Polysaccharide</i>	Antioxidant	Oxidative Stress-related Conditions
6	<i>Aloe Polysaccharides</i>	Antioxidant	Environmental Stress-Related Disorders
7	<i>Aloe Vera Extract</i>	Diabetic Wound Healing	Diabetes
8	<i>Aloe Vera Ksharasutra</i>	Treatment of piles	Arsha (Hemorrhoids)
9	<i>Aloe barbadensis</i>	Growth-promoting	Drought resistance
10	<i>Aloesin</i>	Skin whitening, Anti-inflammatory, Antioxidant	Hyperpigmentation, Inflammatory conditions
11	<i>Aloin</i>	Laxative, Antioxidant	Constipation, Oxidative Stress
12	<i>Barbaloin</i>	Antibacterial, Anti-inflammatory	Bacterial infections, Inflammatory disorders
13	<i>Chrysophanol</i>	Antimicrobial, Hepatoprotective	Liver toxicity, Skin infections
14	<i>Rhein</i>	Anti-diabetic, Antimicrobial	Diabetes, Bacterial infections
15	<i>Emodin</i>	Antitumor, Neuroprotective	Cancer, Neurodegenerative diseases

The review of Aloe-derived alkaloids highlights their diverse therapeutic applications across various health conditions. Acemannan is known for its anti-acne, immune-enhancing, and wound-healing properties, while active Aloe principles and emodin show antitumor and antioxidant activities. Allantoin contributes to wound healing and anti-inflammatory effects, supporting Aloe's role in skin regeneration. Aloe compounds have antibacterial and antimicrobial properties, with barbaloin, chrysophanol, and rhein being effective against bacterial infections, inflammatory disorders, and liver toxicity. Aloe polysaccharides have strong antioxidant properties, protecting against oxidative stress and environmental damage. Aloesin is known for skin whitening, anti-inflammatory, and antioxidant effects, while Aloin functions as a laxative and antioxidant. Aloe barbadensis has growth-promoting properties, while Rhein and emodin show promise in anti-diabetic and neuroprotective effects.

4. DISCUSSION

4.1 Acne Treatment and Dermatology

Research in this area has explored various applications of Aloe-derived compounds, showcasing their pharmacological importance.

- Amruthavalli, G. V., et al. (2019) - Investigated the role of Basil & Aloe alkaloids in treating Acne & skin conditions. The combination of *Ocimum basilicum* and *Aloe vera* reduced acne significantly, demonstrating its efficacy in dermatological applications.
- Pal, S., et al. (2024) - Demonstrated the effectiveness of Acemannan in treating acne vulgaris. The study concluded that Acemannan enhances wound healing and reduces inflammation in acne-prone skin.
- Research over the years has explored the role of Aloe species in dermatological applications, particularly in wound healing and acne treatment. Studies have focused on the anti-inflammatory and regenerative properties of Aloe-derived compounds, making it a key ingredient in skin care formulations.
- Amruthavalli, G. V., et al. (2019) - Investigated the combination of Basil & Aloe alkaloids for acne and skin conditions.
- Pal, S., et al. (2024) - Demonstrated the effectiveness of Acemannan in treating acne vulgaris.
- Pal, S., et al. (2024) - Demonstrated the effectiveness of Acemannan in treating acne vulgaris.
- Amruthavalli, G. V., et al. (2019) - Investigated the combination of Basil & Aloe alkaloids for acne and skin conditions.

The use of Aloe species in traditional and modern medicine has evolved significantly over the centuries, with continuous discoveries expanding its pharmacological applications. Historically, Aloe species, particularly *Aloe socotrina* and *Aloe vera*, have been recognized for their medicinal properties across multiple cultures. In ancient civilizations such as Egypt (circa 1500 BCE), Aloe was revered as the "plant of immortality" and extensively used for wound healing, burn treatments, and dermatological care. The Greeks and Romans (4th century BCE - 5th century CE) integrated Aloe extracts into their medical systems for treating infections, digestive disorders, and skin ailments.

4.2 Gastrointestinal and Hepatic Benefits in Traditional Medicine

Ayurveda, dating back to around 1000 BCE, classified Aloe as a Pitta-pacifying herb, employed for its purgative, digestive, and hepatoprotective properties. In Traditional Chinese Medicine (TCM), Aloe was prescribed as a bitter-cold herb with detoxifying effects, primarily used to regulate bowel movements and clear heat from the body. By the 19th century, Aloe

extracts, particularly from *Aloe socotrina* and *Aloe barbadensis*, were widely commercialized in Europe for their laxative properties, attributed to the presence of aloin and barbaloin.

4.3 Analgesic and Anti-inflammatory Properties

Research in this area has explored various applications of *Aloe*-derived compounds, showcasing their pharmacological importance.

- Egesie, U. G., Chima, K. E., & Galam, N. Z. (2011) - Investigated the role of *Aloe* compounds in treating general pain and inflammation. This research evaluated the analgesic and anti-inflammatory effects of *Aloe vera* in rats. Results showed a significant reduction in pain and swelling, supporting *Aloe*'s traditional medicinal use for pain relief.
- Khurshid, S., Farwa, U., et al. (2024) - Examined the antibacterial and wound-healing properties of *Aloe vera* combined with Cinnamon oil. The study highlighted the antimicrobial action of the combination, suggesting potential applications in treating bacterial infections and skin wounds.

Aloe species have been widely studied for their antimicrobial and anti-inflammatory effects, particularly due to the presence of bioactive alkaloids such as *Aloe-emodin* and *Aloin*. These compounds have demonstrated effectiveness against bacterial infections and inflammatory disorders.

- Khurshid, S., Farwa, U., et al. (2024) - Examined the antibacterial and wound-healing properties of *Aloe vera* combined with Cinnamon oil.
- Khurshid, S., Farwa, U., et al. (2024) - Examined the antibacterial and wound-healing properties of *Aloe vera* combined with Cinnamon oil.

The 20th century marked significant progress in the scientific exploration of *Aloe* species. During the 1920s to 1940s, researchers identified *Aloin* and *Barbaloin* as the primary active constituents responsible for *Aloe*'s purgative effects. The period from the 1950s to 1960s witnessed the isolation of *Aloe-emodin* and *Acemannan*, leading to discoveries about *Aloe*'s anti-inflammatory and antimicrobial potential. These findings paved the way for *Aloe*'s incorporation into treatments for wound healing, burn management, and infection control.

4.4 Antioxidant and Immune-Stimulating Potential

The 1970s and 1980s saw further advancements as studies revealed that *Aloe* polysaccharides possessed potent antioxidant and immunostimulatory properties, demonstrating potential applications in cancer therapy and immune system regulation. By the 1980s and 1990s, the anti-diabetic effects of *Aloe*-derived *Rhein* and *Aloe-emodin* were identified, showcasing their roles in glucose metabolism and insulin regulation. This period also highlighted *Aloe*'s hepatoprotective effects, suggesting its therapeutic significance in liver disorders and metabolic health.

4.5 Anti-cancer, Neuroprotective, and Cardiovascular Applications

In the 21st century, research on *Aloe* species has significantly expanded, leading to a deeper understanding of its pharmacological and therapeutic applications. The early 2000s saw extensive studies into *Aloe*'s anti-cancer, neuroprotective, and cardiovascular benefits, with *Aloin* and *Aloe-emodin* being recognized for their cytotoxic effects against cancer cells.

Dermatological and Cosmetic Applications

In the 2010s, *Aloe*-based formulations gained popularity for skin care applications, particularly for skin whitening, anti-aging, and anti-inflammatory benefits, with *Aloesin* and *Chrysophanol* emerging as key compounds.

Modern Innovations in Drug Delivery and Metabolic Health

More recent research in the 2020s has focused on *Aloe*'s role in gut microbiota modulation, metabolic syndrome management, and its use in drug delivery systems. Advances in nanotechnology have allowed for enhanced bioavailability and therapeutic efficacy of *Aloe*-derived compounds, further supporting their integration into modern medical practices.

4.6 Therapeutic Value of Key Alkaloids

The diverse alkaloid composition of *Aloe* species is integral to its wide-ranging therapeutic effects. *Acemannan* is known for its immune-enhancing and wound-healing properties, making it beneficial for acne treatment, macrophage activation, and tissue regeneration. *Aloe-emodin* has demonstrated antitumor and anti-inflammatory potential, contributing to cancer treatments and inflammatory disease management. *Aloin*, a well-known laxative, also exhibits antioxidant properties, making it useful for managing constipation and oxidative stress. *Aloesin* is recognized for its skin-whitening and anti-inflammatory effects, making it a promising compound in dermatology. *Barbaloin* exhibits antibacterial and anti-inflammatory activities, contributing to gastrointestinal and immune health. *Chrysophanol* and *Rhein* offer antimicrobial and hepatoprotective benefits, while *Emodin* has shown promise in neuroprotection and cancer therapy. Collectively, these bioactive compounds underscore *Aloe*'s pharmacological versatility and potential for novel therapeutic applications. Future research on *Aloe* species should focus on several key areas. Firstly, clinical trials are needed to validate the therapeutic efficacy of *Aloe*-derived compounds, particularly in the treatment of chronic diseases such as diabetes, cancer, and neurodegenerative disorders. Secondly, advancements in biotechnology and nanotechnology should be leveraged to enhance the bioavailability and targeted delivery of *Aloe* compounds, maximizing their medicinal benefits. Thirdly, more studies are required to explore the synergistic effects of *Aloe* alkaloids with other natural and synthetic compounds, potentially leading to the development of novel pharmaceutical formulations. Additionally, research into the sustainability

ISSN: 2208-2093

and conservation of Aloe species is crucial to prevent overharvesting and ensure long-term availability for medicinal use. Investigations into the genetic variation between wild and cultivated Aloe species could provide insights into optimizing bioactive compound production for enhanced therapeutic efficacy.

Despite its extensive pharmacological potential, the therapeutic applications of Aloe species are subject to certain limitations. One major challenge is the variability in phytochemical composition due to differences in cultivation methods, environmental factors, and extraction techniques, which may impact the consistency and efficacy of Aloe-based treatments. Additionally, while in vitro and animal studies have provided promising results, human clinical trials remain limited, necessitating further research to establish standardized dosages and safety profiles. Another limitation is the potential for adverse effects associated with prolonged Aloe consumption, particularly its laxative effects, which may lead to electrolyte imbalances and gastrointestinal disturbances. Regulatory challenges also pose barriers to the widespread adoption of Aloe-based pharmaceuticals, as more rigorous quality control measures are needed to ensure product efficacy and safety.

Aloe species' therapeutic applications highlights its enduring medicinal significance, spanning from ancient traditional practices to modern scientific discoveries. With a diverse array of bioactive alkaloids contributing to its pharmacological effects, Aloe remains a valuable natural remedy for a variety of health conditions. The continued exploration of Aloe's medicinal potential, particularly through clinical research and advanced formulation techniques, holds promise for its integration into evidence-based medicine. While challenges such as variability in phytochemical content and regulatory hurdles remain, ongoing advancements in research and technology are expected to overcome these limitations, paving the way for innovative Aloe-based therapies. By bridging traditional knowledge with scientific validation, Aloe species can continue to serve as a cornerstone of natural medicine, offering new therapeutic possibilities for the future.

5. CONCLUSION

The chronological evaluation of Aloe species underscores its profound medicinal value across various therapeutic domains. From ancient medicinal systems to modern pharmacological research, Aloe's bioactive compounds have consistently demonstrated significant therapeutic potential. The antioxidant, anti-inflammatory, antimicrobial, and anti-diabetic effects of Aloe-derived alkaloids such as aloin, aloe-emodin, and acemannan support their diverse medical applications. Despite its vast therapeutic utility, challenges such as variability in phytochemical composition, regulatory limitations, and insufficient clinical validation necessitate further research. Advancements in biotechnology, including nanotechnology-based drug delivery systems, can enhance the bioavailability of Aloe compounds, paving the way for innovative pharmaceutical applications. Integrating Aloe-based therapies into conventional medicine requires rigorous clinical validation, regulatory standardization, and sustainable cultivation practices to maximize its medicinal potential. Future research should emphasize clinical trials, genetic profiling of Aloe species, and novel pharmaceutical formulations to fully harness Aloe's therapeutic benefits for global healthcare.

6. REFERENCE:

1. Khajeeyan, R., Salehi, A., Movahhedi Dehnavi, M., Hamidian, M., & Hazrati, S. (2024). Evaluation of the benefits of plant growth-promoting rhizobacteria and mycorrhizal fungi on biochemical and morphophysiological traits of *Aloe barbadensis* Mill under water deficit stress. *Scientific reports*, 14(1), 14480. <https://doi.org/10.1038/s41598-024-64878-9>
2. Aldayel, T. S., Badran, M. M., Alomrani, A. H., AlFaris, N. A., Altamimi, J. Z., Alqahtani, A. S., Nasr, F. A., Ghaffar, S., & Orfali, R. (2023). Optimization of cationic nanoparticles stabilized by poloxamer 188: A potential approach for improving the biological activity of *Aloeperryi*. *Heliyon*, 9(12), e22691. <https://doi.org/10.1016/j.heliyon.2023.e22691>
3. Wang, X., Jin, Z., Mao, L., Tu, L., Sun, Y., & Tao, J. (2022). Study on the Skin Hydration and Trans Epidermal Water Loss of Aloe Viscose Seamless Knitted Fabric for Autumn and Winter. *Materials (Basel, Switzerland)*, 16(1), 212. <https://doi.org/10.3390/ma16010212>
4. Bultum, L. E., Tolossa, G. B., Kim, G., Kwon, O., & Lee, D. (2022). In silico activity and ADMET profiling of phytochemicals from Ethiopian indigenous aloes using pharmacophore models. *Scientific reports*, 12(1), 22221. <https://doi.org/10.1038/s41598-022-26446-x>
5. Razia, S., Park, H., Shin, E., Shim, K. S., Cho, E., Kang, M. C., & Kim, S. Y. (2022). Synergistic effect of Aloe vera flower and Aloe gel on cutaneous wound healing targeting MFAP4 and its associated signaling pathway: In-vitro study. *Journal of ethnopharmacology*, 290, 115096. <https://doi.org/10.1016/j.jep.2022.115096>
6. Zhu, J. Z., Ma, Y. M., Wang, X. L., Zhong, J., Zhang, Z., & Li, X. G. (2022). First Report of Southern Blight on Aloe vera Caused by *Athelia rolfsii* in China. *Plant disease*, 10.1094/PDIS-08-21-1850-PDN. Advance online publication. <https://doi.org/10.1094/PDIS-08-21-1850-PDN>
7. Amare, G. G., Meharie, B. G., & Belayneh, Y. M. (2020). Evaluation of Antidiabetic Activity of the Leaf Latex of *Aloe pulcherrima* Gilbert and Sebsebe (Aloaceae). *Evidence-based complementary and alternative medicine : eCAM*, 2020, 8899743. <https://doi.org/10.1155/2020/8899743>
8. Teka, T., Awgicew, T., & Kassahun, H. (2020). Antimalarial Activity of the Leaf Latex of *Aloe weloensis* (Aloaceae) against *Plasmodium berghei* in Mice. *Journal of tropical medicine*, 2020, 1397043. <https://doi.org/10.1155/2020/1397043>

ISSN: 2208-2093

9. Penmetsa, G. S., & Pitta, S. R. (2019). Efficacy of *Ocimum sanctum*, *Aloe vera* and chlorhexidine mouthwash on gingivitis: A randomized controlled comparative clinical study. *Ayu*, 40(1), 23–26. https://doi.org/10.4103/ayu.AYU_212_18

10. Raj, B., Ingole, N., & Ambad, R. (2024). Evaluation of the Wound Healing Potential of Aloe Vera Leaf Extract Containing Carbopol 934 as a Gelling Agent and Comparing with Sodium CMC and HPMC on Surgically Induced in Wound Wister Rats: A Preclinical Study. *Journal of pharmacy & bioallied sciences*, 16(Suppl 4), S3699–S3702. https://doi.org/10.4103/jpbs.jpbs_1101_24 ISSN: 2208-2093

11. Maan, S. A., Faiesal, A. A., Gamar, G. M., & El Dougoug, N. K. (2025). Efficacy of bacteriophages with Aloe vera extract in formulated cosmetics to combat multidrug-resistant bacteria in skin diseases. *Scientific reports*, 15(1), 4335. <https://doi.org/10.1038/s41598-025-86334-y>

12. Velázquez-López, A. A., Torres-Gregorio, M., García-Rojas, V., Hernández-Sánchez, H., & Mora-Escobedo, R. (2025). In Vitro Study of the Biological Activity of *Aloe barbadensis* Miller and its Physicochemical Characterization. *Plant foods for human nutrition* (Dordrecht, Netherlands), 80(1), 55. <https://doi.org/10.1007/s11130-025-01299-7>

13. Liao, B., Zhang, C., Shen, J., Chen, D., Wang, J., Chen, X., Zhou, Y., Wei, Y., Shi, Y., Gou, L., Guo, Q., Zhou, X., Xie, H., Zhao, L., Liao, G., Zhu, Z., Cheng, L., Zhou, X., Li, Y., & Ren, B. (2025). Aloin remodels the cell wall of *Candida albicans* to reduce its hyphal virulence against oral candidiasis. *Applied microbiology and biotechnology*, 109(1), 21. <https://doi.org/10.1007/s00253-025-13411-7>

14. Moharram, B. A., Alburyhi, M. M., Al-Maqtari, T., & Faisal, A. (2025). Evaluating the Antidiabetic Activity of *Aloe niebuhriana* Latex in Alloxan-Induced Diabetic Rats and the Development of a Novel Effervescent Granule-Based Delivery System. *TheScientificWorldJournal*, 2025, 5648662. <https://doi.org/10.1155/tswj/5648662>

15. Kebriti, I., Solgi, M., & Velashjerdi, M. (2025). Improving quality of strawberry by novel essential oil nanoemulsions of *Echinophora platyloba* combined with *Aloe vera* gel and gum arabic. *Scientific reports*, 15(1), 1731. <https://doi.org/10.1038/s41598-025-86259-6>

16. Triantafyllou, E., Karydis-Messinis, A., Moschovas, D., Kyriakaki, C., Vasilopoulos, K. C., Giannakas, A. E., Karakassides, M. A., Avgeropoulos, A., Zafeiropoulos, N. E., & Salmas, C. E. (2024). Microwave-Assisted Extraction of Cellulose from *Aloe Vera* Plant Residue and Preparation of Cellulose Nanocrystal-Poly(vinyl alcohol) Hydrogels. *Molecules (Basel, Switzerland)*, 29(24), 6012. <https://doi.org/10.3390/molecules29246012>

17. Dayoob, M., Kee, Y. W. Y., Bahrin, W. H., Alrimawi, B. H., Kumarasamy, V., Subramaniyan, V., Albadrani, G. M., Al-Ghadi, M. Q., Kamel, M., Abdel-Daim, M. M., & Azad, A. K. (2024). Development and Characterization of Fusidic Acid-Loaded Alginate-Aloe vera Based Hydrogel Film. *Journal of visualized experiments : JoVE*, (214), 10.3791/67068. <https://doi.org/10.3791/67068>

18. Hakami, Z. H., Abdo, W., Nazeam, J. A., Osman, S. M., Goda, W., Fadl, S. E., Alsulimani, A., Al-Noshokaty, T. M., Hardiy, M., Alnasser, S. M., & Abdeen, A. (2025). Aloe arborescens Standardized Glycosidic Fraction Suppresses Hepatocarcinoma by Modulating TIMP1, MMP9 Genes Expression, and Inflammation/Ki67/TGFβ1 Pathway. *Phytotherapy research : PTR*, 39(2), 1090–1106. <https://doi.org/10.1002/ptr.8412>

19. Wani, M. J., Zofair, S. F. F., Salman, K. A., Moin, S., & Hasan, A. (2025). Aloin reduces advanced glycation end products, decreases oxidative stress, and enhances structural stability in glycated low-density lipoprotein. *International journal of biological macromolecules*, 289, 138823. <https://doi.org/10.1016/j.ijbiomac.2024.138823>

20. Feroze, F., Sher, M., Hussain, M. A., Abbas, A., Haseeb, M. T., Fatima, A., Naeem-Ul-Hassan, M., & Amin, H. M. A. (2025). Gastro retentive floating drug delivery system of levofloxacin based on *Aloe vera* hydrogel: In vitro and in vivo assays. *International journal of biological macromolecules*, 284(Pt 1), 138156. <https://doi.org/10.1016/j.ijbiomac.2024.138156>

21. Calzoni, E., Bertoldi, A., Cesaretti, A., Alabed, H. B. R., Cerrotti, G., Pellegrino, R. M., Buratta, S., Urbanelli, L., & Emiliani, C. (2024). Aloe Extracellular Vesicles as Carriers of Photoinducible Metabolites Exhibiting Cellular Phototoxicity. *Cells*, 13(22), 1845. <https://doi.org/10.3390/cells13221845>

22. Shih, P. C., Lin, C. H., Chokkalingam, U., Prakash, E., Kao, C. N., Chang, C. F., & Lin, W. L. (2024). The *Aloe vera* acemannan polysaccharides inhibit phthalate-induced cell viability, metastasis, and stemness in colorectal cancer cells. *Ecotoxicology and environmental safety*, 288, 117351. <https://doi.org/10.1016/j.ecoenv.2024.117351>

23. Wang, X., Yang, J., Zhao, Q., Xie, X., Deng, F., Wang, Z., Jiang, K., Li, X., Liu, H., Shi, Z., Zhu, X., Chen, L., & Lv, D. (2024). A tissue-adhesive, mechanically enhanced, natural *Aloe Vera*-based injectable hydrogel for wound healing: Macrophage mediation and collagen proliferation. *International journal of biological macromolecules*, 283(Pt 1), 137452. <https://doi.org/10.1016/j.ijbiomac.2024.137452>

24. Ouyang, F., Li, Y., Wang, H., Liu, X., Tan, X., Xie, G., Zeng, J., Zeng, G., Luo, Q., Zhou, H., Chen, S., Hou, K., Fang, J., Zhang, X., Zhou, L., Li, Y., & Gao, A. (2024). Aloe Emodin Alleviates Radiation-Induced Heart Disease via Blocking P4HB Lactylation and Mitigating Kynurenine Metabolic Disruption. *Advanced science (Weinheim, Baden-Württemberg, Germany)*, 11(47), e2406026. <https://doi.org/10.1002/advs.202406026>

25. Sulayman, R., Ali, S., Ullah, R., Summer, M., Hassan, A., Shahzad, H., Fiaz, U., Mumtaz, S., Nauroze, T., & Mumtaz, S. (2024). A comprehensive study on mechanisms of action of fibroin, *aloe vera*, and ginger extracts through histochemical, inflammation biomarkers, and matrix metalloproteinases analysis against diabetic wounds. *Journal of tissue viability*, 33(4), 949–959. <https://doi.org/10.1016/j.jtv.2024.10.006>

26. Romero-Alemán, M. D., Pérez-Galván, J. M., Hernández-Rodríguez, J. E., & Monzón-Mayor, M. (2025). The Potential of Aloe Vera in Solution and in Blended Nanofibers Containing Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) as Substrates for Neurite Outgrowth. *Journal of biomedical materials research, Part A*, 113(1), e37825. <https://doi.org/10.1002/jbm.a.37825> ISSN: 2208-2093

27. Shetty, A. P., Halemani, K., Issac, A., Thimmappa, L., Shashidhara, Y. N., Mathias, E., Dhiraaj, S., Radha, K., Mishra, P., & Sharma, A. (2024). Effectiveness of the Application of Lanolin, Aloe Vera, and Peppermint on Nipple Pain and Nipple Trauma in Lactating Mothers: A Systematic Review and Meta-Analysis. *Maternal and child health journal*, 28(12), 2013–2025. <https://doi.org/10.1007/s10995-024-04006-1>

28. Chen, S., Liao, T., Zhao, S., Wang, B., Yu, L., Jiang, T., Hao, T., Wu, W., Li, C., Shen, F., & Zhang, Q. (2024). High strength "breathable" glycosilicone/Aloe vera polysaccharide-based gel dressing for efficient wound repair. *International journal of biological macromolecules*, 281(Pt 4), 136293. <https://doi.org/10.1016/j.ijbiomac.2024.136293>

29. Singh, S., Kumar, S., & Dhanasingh, I. (2024). Overexpression, purification and biochemical studies of Sortase A from *Enterococcus faecalis* (Ef) and its inhibition studies with Aloenin. *Acta tropica*, 260, 107419. <https://doi.org/10.1016/j.actatropica.2024.107419>

30. Zhao, Y., Zhang, T., Liang, Y., Xie, X., Pan, H., Cao, M., Wang, S., Wu, D., Wang, J., Wang, C., & Hu, W. (2024). Combination of aloe emodin, emodin, and rhein from Aloe with EDTA sensitizes the resistant *Acinetobacter baumannii* to polymyxins. *Frontiers in cellular and infection microbiology*, 14, 1467607. <https://doi.org/10.3389/fcimb.2024.1467607>

31. Subramaniyan, G., Rubina, S., Ramana, B. V., Stanley, A. M., & Srinivasan, D. (2024). Aloe vera leaf mucilage and lemon oil as potential penetration-enhancing agents to increase lornoxicam transdermal administration using nano vesicular gel. *Pakistan journal of pharmaceutical sciences*, 37(3), 499–509.

32. Liao, B., Zhang, C., Shen, J., Chen, D., Wang, J., Chen, X., Zhou, Y., Wei, Y., Shi, Y., Gou, L., Guo, Q., Zhou, X., Xie, H., Zhao, L., Liao, G., Zhu, Z., Cheng, L., Zhou, X., Li, Y., & Ren, B. (2025). Aloin remodels the cell wall of *Candida albicans* to reduce its hyphal virulence against oral candidiasis. *Applied microbiology and biotechnology*, 109(1), 21. <https://doi.org/10.1007/s00253-025-13411-7>

33. Shen, X., Gong, L., Li, R., Huang, N., Zhang, H., Chen, S., Liu, Y., & Sun, R. (2024). Treatment of constipation with *Aloe* and its compatibility prescriptions. *Chinese herbal medicines*, 16(4), 561–571. <https://doi.org/10.1016/j.chmed.2024.07.005>

34. Shih, P. C., Lin, C. H., Chokkalingam, U., Prakash, E., Kao, C. N., Chang, C. F., & Lin, W. L. (2024). The Aloe vera acemannan polysaccharides inhibit phthalate-induced cell viability, metastasis, and stemness in colorectal cancer cells. *Ecotoxicology and environmental safety*, 288, 117351. <https://doi.org/10.1016/j.ecoenv.2024.117351>

35. Chen, R., Zhang, H., Zhao, X., Zhu, L., Zhang, X., Ma, Y., & Xia, L. (2024). Progress on the mechanism of action of emodin against breast cancer cells. *Heliyon*, 10(21), e38628. <https://doi.org/10.1016/j.heliyon.2024.e38628>

36. Ouyang, F., Li, Y., Wang, H., Liu, X., Tan, X., Xie, G., Zeng, J., Zeng, G., Luo, Q., Zhou, H., Chen, S., Hou, K., Fang, J., Zhang, X., Zhou, L., Li, Y., & Gao, A. (2024). Aloe Emodin Alleviates Radiation-Induced Heart Disease via Blocking P4HB Lactylation and Mitigating Kynurenine Metabolic Disruption. *Advanced science (Weinheim, Baden-Württemberg, Germany)*, 11(47), e2406026. <https://doi.org/10.1002/advs.202406026>

37. Wang, X., Chen, H., Shao, N., Zhang, X., Huang, C., Li, X., Zhang, J., Chang, Z., Tang, L., & Xie, D. (2024). Protective Effect of Aloe-emodin on Cognitive Function in Copper-loaded Rats Based on The Inhibition of Hippocampal Neuron Ferroptosis. *Current neurovascular research*, 10.2174/0115672026348862241003042336. Advance online publication. <https://doi.org/10.2174/0115672026348862241003042336>

38. Zhao, Y., Zhang, T., Liang, Y., Xie, X., Pan, H., Cao, M., Wang, S., Wu, D., Wang, J., Wang, C., & Hu, W. (2024). Combination of aloe emodin, emodin, and rhein from Aloe with EDTA sensitizes the resistant *Acinetobacter baumannii* to polymyxins. *Frontiers in cellular and infection microbiology*, 14, 1467607. <https://doi.org/10.3389/fcimb.2024.1467607>

39. Elkomy, N. M. I. M., El-Shaibany, A., Al-Mahbashi, H., Abdelkhalek, A. S., Elnagar, G. M., Elaasser, M. M., & Raslan, A. E. (2025). Evaluation of in-vitro antioxidant activity, acute oral toxicity, and pancreatic and hepatic protective effects of *Aloe rubroviolacea* flowers extract against CCl₄ toxicity in a rat model. *Journal of ethnopharmacology*, 337(Pt 1), 118768. <https://doi.org/10.1016/j.jep.2024.118768>

40. Yang, Y., Sun, J., You, H., Sun, Y., Song, Y., Shen, Z., Liu, T., Guan, D., Zhou, Y., Cheng, S., Wang, C., Yu, G., Zhu, C., & Tang, Z. (2024). Aloe-emodin relieves allergic contact dermatitis pruritus by inhibiting mast cell degranulation. *Immunology letters*, 270, 106902. <https://doi.org/10.1016/j.imlet.2024.106902>

41. Yang, D., Ge, T., Zhou, J., Li, H., & Zhang, Y. (2024). Aloe-emodin alleviates inflammatory bowel disease in mice by modulating intestinal microbiome homeostasis via the IL-4/IL-13 axis. *Heliyon*, 10(15), e34932. <https://doi.org/10.1016/j.heliyon.2024.e34932>

42. Syraji, Y., Kebebew, M., Techane, Y., & Albene, D. (2024). Antimicrobial, Antiradical Activity, and X-Ray Fluorescence Spectroscopy Analysis of *Aloe otallensis* Plant Used in Traditional Medicine in Southern Ethiopia. *International journal of microbiology*, 2024, 1981990. <https://doi.org/10.1155/2024/1981990>

43. Patitucci, F., Motta, M. F., Miletí, O., Dattilo, M., Malivindi, R., Pezzi, G., Gabriele, D., Parisi, O. I., & Puoci, F. (2025). Enhancing burn wound care with pre-crosslinked 3D-printed patches: Bromelain delivery and aloe vera

bioactives integration for improved healing outcomes. *International journal of pharmaceutics*, 672, 125304. Advance online publication. <https://doi.org/10.1016/j.ijpharm.2025.125304>

44. Velázquez-López, A. A., Torres-Gregorio, M., García-Rojas, V., Hernández-Sánchez, H., & Mora-Escobedo, R. (2025). In Vitro Study of the Biological Activity of Aloe barbadensis Miller and its Physicochemical Characterization. *Plant foods for human nutrition* (Dordrecht, Netherlands), 80(1), 55. <https://doi.org/10.1007/s11130-025-01299-7> ISSN: 2208-2093

45. Carballo-López, G. I., Ojeda-González, J., Martínez-García, K. D., Cervantes-Luevano, K. E., Moreno-Ulloa, A., & Castro-Ceseña, A. B. (2025). Enhanced anti-inflammatory and anti-fibrotic effects of nanoparticles loaded with a combination of *Aloe vera*-*Moringa oleifera* extracts. *Molecular omics*, 10.1039/d4mo00195h. Advance online publication. <https://doi.org/10.1039/d4mo00195h>

46. Ghosh, I., Banerjee, S., Dutta, S., Maji, H. S., & Mondal, A. (2025). Exploring the anti-diabetic potential of *Aloe vera*: isolation and characterization of bioactive compounds. *Natural product research*, 1–7. Advance online publication. <https://doi.org/10.1080/14786419.2025.2451775>

47. Pal, S., Raj, M., Singh, M., Saurav, K., Paliwal, C., Saha, S., Sharma, A. K., & Singh, M. (2024). The Effect of *Aloe vera* on Skin and Its Commensals: Contribution of Acemannan in Curing Acne Caused by *Propionibacterium acnes*. *Microorganisms*, 12(10), 2070. <https://doi.org/10.3390/microorganisms12102070>

48. Gutiérrez Rafael, B. J., Zaca Moran, O., Delgado Macuil, R. J., Martínez Gutiérrez, H., García Juárez, M., & Lopez Gayou, V. (2024). Study of the Incorporation of Gel and *Aloe vera* Peel Extract in a Polymer Matrix Based on Polyvinylpyrrolidone. *Polymers*, 16(14), 1998. <https://doi.org/10.3390/polym16141998>

49. Edo G. I. (2024). Coordination of bioactive phytochemicals from *Aloe vera* extracts to metal ions; investigation of the metal complexes and bioactive compound formed. *Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine*, 37(6), 1379–1391. <https://doi.org/10.1007/s10534-024-00611-3>

50. Liao, B., Zhang, C., Shen, J., Chen, D., Wang, J., Chen, X., Zhou, Y., Wei, Y., Shi, Y., Gou, L., Guo, Q., Zhou, X., Xie, H., Zhao, L., Liao, G., Zhu, Z., Cheng, L., Zhou, X., Li, Y., & Ren, B. (2025). Aloin remodels the cell wall of *Candida albicans* to reduce its hyphal virulence against oral candidiasis. *Applied microbiology and biotechnology*, 109(1), 21. <https://doi.org/10.1007/s00253-025-13411-7>

51. Moharram, B. A., Alburyhi, M. M., Al-Maqtari, T., & Faisal, A. (2025). Evaluating the Antidiabetic Activity of *Aloe niebhuriiana* Latex in Alloxan-Induced Diabetic Rats and the Development of a Novel Effervescent Granule-Based Delivery System. *TheScientificWorldJournal*, 2025, 5648662. <https://doi.org/10.1155/tswj/5648662>

52. Shen, X., Gong, L., Li, R., Huang, N., Zhang, H., Chen, S., Liu, Y., & Sun, R. (2024). Treatment of constipation with *Aloe* and its compatibility prescriptions. *Chinese herbal medicines*, 16(4), 561–571. <https://doi.org/10.1016/j.chmed.2024.07.005>

53. Chen, S., Dou, Y., Zhang, S., Qiu, H., Liu, H., Xu, Y., Shu, L., & Li, Y. (2025). Rapid Identification of Chemical Constituents in New Compound Aloe Capsule Based on UPLC-Q-Orbitrap-MS. *Rapid communications in mass spectrometry : RCM*, 39(3), e9944. <https://doi.org/10.1002/rcm.9944>

54. Shih, P. C., Lin, C. H., Chokkalingam, U., Prakash, E., Kao, C. N., Chang, C. F., & Lin, W. L. (2024). The *Aloe vera* acemannan polysaccharides inhibit phthalate-induced cell viability, metastasis, and stemness in colorectal cancer cells. *Ecotoxicology and environmental safety*, 288, 117351. <https://doi.org/10.1016/j.ecoenv.2024.117351>

55. Melenshia, D. S., Amirtham, S. M., Rebekah, G., Vinod, E., & Kachroo, U. (2024). Effect of reconstituted, lyophilized cold aqueous extract of *Aloe vera* on human whole blood clotting time - A pilot study. *Journal of Ayurveda and integrative medicine*, 15(2), 100887. <https://doi.org/10.1016/j.jaim.2024.100887>

56. Abdullah, Z., Ashraf, M. U., Barkat, K., Badshah, S. F., Rehman, U., Razaq, A., Mahmood, A., Ulhaq, F., Chopra, H., Rashid, S., Valko, M., Alomar, S., Kuca, K., & Sharma, R. (2023). Formulation of pH-responsive highly swellable hydrogel scaffolds for controlled release of tramadol HCl: characterization and biocompatibility evaluation. *Frontiers in bioengineering and biotechnology*, 11, 1190322. <https://doi.org/10.3389/fbioe.2023.1190322>

57. Bohra, A., Maheswari, T. N. U., Harsh, A., & Garg, A. (2021). Black Turmeric and *Aloe Vera* in the Management of Oral Submucous Fibrosis: A Prospective Clinical Study. *Asian Pacific journal of cancer prevention : APJCP*, 22(12), 3941–3947. <https://doi.org/10.31557/APJCP.2021.22.12.3941>

58. Liao, B., Zhang, C., Shen, J., Chen, D., Wang, J., Chen, X., Zhou, Y., Wei, Y., Shi, Y., Gou, L., Guo, Q., Zhou, X., Xie, H., Zhao, L., Liao, G., Zhu, Z., Cheng, L., Zhou, X., Li, Y., & Ren, B. (2025). Aloin remodels the cell wall of *Candida albicans* to reduce its hyphal virulence against oral candidiasis. *Applied microbiology and biotechnology*, 109(1), 21. <https://doi.org/10.1007/s00253-025-13411-7>

59. Shen, X., Gong, L., Li, R., Huang, N., Zhang, H., Chen, S., Liu, Y., & Sun, R. (2024). Treatment of constipation with *Aloe* and its compatibility prescriptions. *Chinese herbal medicines*, 16(4), 561–571. <https://doi.org/10.1016/j.chmed.2024.07.005>

60. Liao, B., Zhang, C., Shen, J., Chen, D., Wang, J., Chen, X., Zhou, Y., Wei, Y., Shi, Y., Gou, L., Guo, Q., Zhou, X., Xie, H., Zhao, L., Liao, G., Zhu, Z., Cheng, L., Zhou, X., Li, Y., & Ren, B. (2025). Aloin remodels the cell wall of *Candida albicans* to reduce its hyphal virulence against oral candidiasis. *Applied microbiology and biotechnology*, 109(1), 21. <https://doi.org/10.1007/s00253-025-13411-7>

61. Liao, B., Zhang, C., Shen, J., Chen, D., Wang, J., Chen, X., Zhou, Y., Wei, Y., Shi, Y., Gou, L., Guo, Q., Zhou, X., Xie, H., Zhao, L., Liao, G., Zhu, Z., Cheng, L., Zhou, X., Li, Y., & Ren, B. (2025). Aloin remodels the cell wall of

Candida albicans to reduce its hyphal virulence against oral candidiasis. *Applied microbiology and biotechnology*, 109(1), 21. <https://doi.org/10.1007/s00253-025-13411-7>

62. Shih, P. C., Lin, C. H., Chokkalingam, U., Prakash, E., Kao, C. N., Chang, C. F., & Lin, W. L. (2024). The Aloe vera acemannan polysaccharides inhibit phthalate-induced cell viability, metastasis, and stemness in colorectal cancer cells. *Ecotoxicology and environmental safety*, 288, 117351. <https://doi.org/10.1016/j.ecoenv.2024.117351> ISSN: 2208-2093

63. Ouyang, F., Li, Y., Wang, H., Liu, X., Tan, X., Xie, G., Zeng, J., Zeng, G., Luo, Q., Zhou, H., Chen, S., Hou, K., Fang, J., Zhang, X., Zhou, L., Li, Y., & Gao, A. (2024). Aloe Emodin Alleviates Radiation-Induced Heart Disease via Blocking P4HB Lactylation and Mitigating Kynurenine Metabolic Disruption. *Advanced science (Weinheim, Baden-Wurttemberg, Germany)*, 11(47), e2406026. <https://doi.org/10.1002/advs.202406026>

64. Tornero-Martínez, A., Cruz-Ortiz, R., Jaramillo-Flores, M. E., Osorio-Díaz, P., Ávila-Reyes, S. V., Alvarado-Jasso, G. M., & Mora-Escobedo, R. (2019). In vitro Fermentation of Polysaccharides from *Aloe vera* and the Evaluation of Antioxidant Activity and Production of Short Chain Fatty Acids. *Molecules (Basel, Switzerland)*, 24(19), 3605. <https://doi.org/10.3390/molecules24193605>

65. Velázquez-López, A. A., Torres-Gregorio, M., García-Rojas, V., Hernández-Sánchez, H., & Mora-Escobedo, R. (2025). In Vitro Study of the Biological Activity of *Aloe barbadensis* Miller and its Physicochemical Characterization. *Plant foods for human nutrition (Dordrecht, Netherlands)*, 80(1), 55. <https://doi.org/10.1007/s11130-025-01299-7>

66. Carballo-López, G. I., Ojeda-González, J., Martínez-García, K. D., Cervantes-Luevano, K. E., Moreno-Ulloa, A., & Castro-Ceseña, A. B. (2025). Enhanced anti-inflammatory and anti-fibrotic effects of nanoparticles loaded with a combination of *Aloe vera*-*Moringa oleifera* extracts. *Molecular omics*, 10.1039/d4mo00195h. Advance online publication. <https://doi.org/10.1039/d4mo00195h>

67. Krupa, S., Ruman, T., Szuberla, W., & Nizioł, J. (2025). Analysis of the spatial distribution of metabolites in *Aloe vera* leaves by mass spectrometry imaging and UHPLC-UHRMS. *Scientific reports*, 15(1), 3502. <https://doi.org/10.1038/s41598-025-88144-8>

68. Ghosh, I., Banerjee, S., Dutta, S., Maji, H. S., & Mondal, A. (2025). Exploring the anti-diabetic potential of *Aloe vera*: isolation and characterization of bioactive compounds. *Natural product research*, 1–7. Advance online publication. <https://doi.org/10.1080/14786419.2025.2451775>

69. Iosageanu, A., Mihai, E., Seciu-Grama, A. M., Utoiu, E., Gaspar-Pintilieescu, A., Gatea, F., Cimpean, A., & Craciunescu, O. (2024). In Vitro Wound-Healing Potential of Phenolic and Polysaccharide Extracts of *Aloe vera* Gel. *Journal of functional biomaterials*, 15(9), 266. <https://doi.org/10.3390/jfb15090266>

70. Elkomy, N. M. I. M., El-Shaibany, A., Al-Mahbashi, H., Abdelkhalek, A. S., Elnagar, G. M., Elaasser, M. M., & Raslan, A. E. (2025). Evaluation of in-vitro antioxidant activity, acute oral toxicity, and pancreatic and hepatic protective effects of *Aloe rubroviolacea* flowers extract against CCl_4 toxicity in a rat model. *Journal of ethnopharmacology*, 337(Pt 1), 118768. <https://doi.org/10.1016/j.jep.2024.118768>

71. Pimpa, J., Authaida, S., Boonkum, W., Rerkyusuke, S., Janta, C., & Chankitisakul, V. (2024). Unveiling the Potential of *Aloe vera* Gel Supplementation in a Cooling Extender: A Breakthrough in Enhancing Rooster Sperm Quality and Fertility Ability. *Animals : an open access journal from MDPI*, 14(16), 2290. <https://doi.org/10.3390/ani14162290>

72. Hotan, O., Alhaj, A., Al-Quhaim, A., Alburaihi, K., Ahmed, Y., Munasser, Q., Dhufer, S. B., Nasran, T., Gabir, M., Ebrahim, A., Obadi, M., Hadi, M., Al-Baity, H., Ba-Nafea, A., Qaed, E., Zaky, M. Y., Okba, M., Al-Nasi, A., & Almoiliqy, M. (2024). Evaluating the pharmacological activities of *Aloe perryi*-Silver nanoparticles induced apoptosis against colon cancer cells (HCT-116). *Food science & nutrition*, 12(8), 5890–5906. <https://doi.org/10.1002/fsn3.4246>

73. Yoruk, N. G., & Istanbullu Paksoy, Ö. (2024). GC/MS evaluation of the composition of the *Aloe vera* gel and extract. *Food chemistry: X*, 23, 101536. <https://doi.org/10.1016/j.fochx.2024.101536>

74. Khajeeyan, R., Salehi, A., Movahhedi Dehnavi, M., Hamidian, M., & Hazrati, S. (2024). Evaluation of the benefits of plant growth-promoting rhizobacteria and mycorrhizal fungi on biochemical and morphophysiological traits of *Aloe barbadensis* Mill under water deficit stress. *Scientific reports*, 14(1), 14480. <https://doi.org/10.1038/s41598-024-64878-9>

75. Yang, X., Li, C., Ge, M., Li, X., Zhao, W., Guo, H., Nie, H., & Liu, J. (2024). Mn(II)-Aloe-Emodin Nanoscale Coordination Polymer Enhances Ferroptosis by Synergistically Enhancing Reactive Oxygen Species Generation via the Nrf2-GPX4 Axis. *Advanced healthcare materials*, 13(28), e2400474. <https://doi.org/10.1002/adhm.202400474>

76. Pal, D., Mitra, D., Hazra, S., & Ghosh, D. (2024). Protective Effect of *Aloe vera* (L.) on Diabetes-Induced Oxidative Stress Linked Spermological Co-Morbidity in Human and Rat: An In-Vitro Analysis. *Reproductive sciences (Thousand Oaks, Calif.)*, 31(9), 2685–2699. <https://doi.org/10.1007/s43032-024-01605-9>

77. Khurshid, S., Farwa, U., Mazhar, Z., Naeem, H., & Ishaq, Y. (2024). Evaluation of Aloe Vera Gel Combined with Cinnamon Oil with Antibacterial Activity for Wound Healing Application. *The international journal of lower extremity wounds*, 15347346241259102. Advance online publication. <https://doi.org/10.1177/15347346241259102>

78. Getahun, T., Das, J., Sil, P. C., & Gupta, N. (2024). Antibacterial and Antioxidant Compounds from the Root Extract of *Aloe debrana*. *Evidence-based complementary and alternative medicine : eCAM*, 2024, 6651648. <https://doi.org/10.1155/2024/6651648>

79. Sharma, D., Sharma, A., Bala, R., & Singh, B. (2024). Investigations on physicochemical and biomedical properties of *Aloe vera* - *Sterculia* gum copolymeric dressings impregnated with antibiotic-anesthetic drugs to enhance wound

healing. *International journal of biological macromolecules*, 267(Pt 2), 131363. <https://doi.org/10.1016/j.ijbiomac.2024.131363>

80. Girgin, R., Çeker, G., Turan, I., Kutu, F., Elma, Y., & Yilmaz Can, E. (2024). The effects of topical aloe vera on an experimentally designed penile fracture model in rats. *Sıçanlarda deneysel olarak tasarlanmış penil fraktür modelinde topikal aloe vera'nın etkileri. Ulusal travma ve acil cerrahi dergisi = Turkish journal of trauma & emergency surgery: TJTES*, 30(3), 147–154. <https://doi.org/10.14744/tjes.2024.26425>

81. Komal, Shabaan, M., Ali, Q., Asghar, H. N., Zahir, Z. A., Yousaf, K., Aslam, N., Zulfiqar, U., Ejaz, M., Alwahibi, M. S., & Ali, M. A. (2024). Exploring the synergistic effect of chromium (Cr) tolerant *Pseudomonas aeruginosa* and nano zero valent iron (nZVI) for suppressing Cr uptake in Aloe Vera. *International journal of phytoremediation*, 26(9), 1474–1485. <https://doi.org/10.1080/15226514.2024.2327838>

82. Hassan, R. E., Saleh, E. M., & Hamdy, G. M. (2025). Aloe vera gel relieves cadmium triggered hepatic injury via antioxidant, anti-inflammatory, and anti-apoptotic routes. *Biological trace element research*, 203(1), 218–228. <https://doi.org/10.1007/s12011-024-04141-4>

83. Mohamed, A. O., Abd-Elghaffar, S. K., Mousa, R. A., & Kamel, A. A. (2024). Aloe vera gel confers therapeutic effect by reducing pyroptosis in ethanol-induced gastric ulcer rat model: Role of NLRP3/GSDMD signaling pathway. *Molecular biology reports*, 51(1), 401. <https://doi.org/10.1007/s11033-024-09329-4>

84. Velázquez-López, A. A., Torres-Gregorio, M., García-Rojas, V., Hernández-Sánchez, H., & Mora-Escobedo, R. (2025). In Vitro Study of the Biological Activity of Aloe barbadensis Miller and its Physicochemical Characterization. *Plant foods for human nutrition (Dordrecht, Netherlands)*, 80(1), 55. <https://doi.org/10.1007/s11130-025-01299-7>

85. Velázquez-López, A. A., Torres-Gregorio, M., García-Rojas, V., Hernández-Sánchez, H., & Mora-Escobedo, R. (2025). In Vitro Study of the Biological Activity of Aloe barbadensis Miller and its Physicochemical Characterization. *Plant foods for human nutrition (Dordrecht, Netherlands)*, 80(1), 55. <https://doi.org/10.1007/s11130-025-01299-7>

86. Triantafyllou, E., Karydis-Messinis, A., Moschovas, D., Kyriakaki, C., Vasilopoulos, K. C., Giannakas, A. E., Karakassides, M. A., Avgeropoulos, A., Zafeiropoulos, N. E., & Salmas, C. E. (2024). Microwave-Assisted Extraction of Cellulose from Aloe Vera Plant Residue and Preparation of Cellulose Nanocrystal-Poly(vinyl alcohol) Hydrogels. *Molecules (Basel, Switzerland)*, 29(24), 6012. <https://doi.org/10.3390/molecules29246012>

87. Saenchoopa, A., Plaeyao, K., Talodthaisong, C., Thet Tun, W. S., Nasomjai, P., Lapmanee, S., Somsakeesit, L. O., Hutchison, J. A., & Kulchat, S. (2025). Development of Antibacterial Hydrogels Based on Biopolymer Aloe Vera/Gelatin/Sodium Alginate Composited With SM-AgNPs Loaded Curcumin-Nanoliposomes. *Macromolecular bioscience*, e2400504. Advance online publication. <https://doi.org/10.1002/mabi.202400504>

88. Gül, D., Özdemir, S. A., Yücel, O., Yıldırım, E., Kalyon, G., Sungur, E., Emik, S., Erol, A., & Kara, N. T. (2024). Antimicrobial and Antibiofilm Activity of Green Synthesized Silver Nanoparticles by Using In Vitro Grown Aloe vera L. *Microscopy research and technique*, 10.1002/jemt.24768. Advance online publication. <https://doi.org/10.1002/jemt.24768>

89. Plascencia Martinez, D. F., Quiroz Castillo, J. M., Ospina Orejarena, A., Pérez Gallardo, A., Méndez Merino, E., Trimmer López, G. A., López Peña, I. Y., Hernández Martínez, D., López Gastelum, K. A., Leyva Verduzco, A. A., Ledezma, A. S., & Castillo Ortega, M. M. (2024). Comparative Study of Single and Coaxial Electrospun Antimicrobial Cross-Linked Scaffolds Enriched with Aloe Vera: Characterization, Antimicrobial Activity, Drug Delivery, Cytotoxicity, and Cell Proliferation on Adipose Stem Cells and Human Skin Fibroblast. *ACS omega*, 9(40), 41157–41170. <https://doi.org/10.1021/acsomega.4c01016>

90. Iosageanu, A., Mihai, E., Seciu-Grama, A. M., Utoiu, E., Gaspar-Pintilieescu, A., Gatea, F., Cimpean, A., & Craciunescu, O. (2024). In Vitro Wound-Healing Potential of Phenolic and Polysaccharide Extracts of Aloe vera Gel. *Journal of functional biomaterials*, 15(9), 266. <https://doi.org/10.3390/jfb15090266>

91. Seneviratne, D. M., Raphael, B., Whiteside, E. J., Windus, L. C. E., Kauter, K., Dearnaley, J. D. W., Annamalai, P. K., Ward, R., Song, P., & Burey, P. P. (2024). A low-cost, antimicrobial aloe-alginate hydrogel film containing Australian First Nations remedy 'lemon myrtle oil' (*Backhousia citriodora*) - Potential for incorporation into wound dressings. *Heliyon*, 10(18), e37516. <https://doi.org/10.1016/j.heliyon.2024.e37516>

92. Velázquez-López, A. A., Torres-Gregorio, M., García-Rojas, V., Hernández-Sánchez, H., & Mora-Escobedo, R. (2025). In Vitro Study of the Biological Activity of Aloe barbadensis Miller and its Physicochemical Characterization. *Plant foods for human nutrition (Dordrecht, Netherlands)*, 80(1), 55. <https://doi.org/10.1007/s11130-025-01299-7>

93. Carballo-López, G. I., Ojeda-González, J., Martínez-García, K. D., Cervantes-Luevano, K. E., Moreno-Ulloa, A., & Castro-Ceseña, A. B. (2025). Enhanced anti-inflammatory and anti-fibrotic effects of nanoparticles loaded with a combination of Aloe vera-Moringa oleifera extracts. *Molecular omics*, 10.1039/d4mo00195h. Advance online publication. <https://doi.org/10.1039/d4mo00195h>

94. Saenchoopa, A., Plaeyao, K., Talodthaisong, C., Thet Tun, W. S., Nasomjai, P., Lapmanee, S., Somsakeesit, L. O., Hutchison, J. A., & Kulchat, S. (2025). Development of Antibacterial Hydrogels Based on Biopolymer Aloe Vera/Gelatin/Sodium Alginate Composited With SM-AgNPs Loaded Curcumin-Nanoliposomes. *Macromolecular bioscience*, e2400504. Advance online publication. <https://doi.org/10.1002/mabi.202400504>

95. Wani, M. J., Zofair, S. F. F., Salman, K. A., Moin, S., & Hasan, A. (2025). Aloin reduces advanced glycation end products, decreases oxidative stress, and enhances structural stability in glycated low-density lipoprotein. *International journal of biological macromolecules*, 289, 138823. <https://doi.org/10.1016/j.ijbiomac.2024.138823> ISSN: 2208-2093

96. Shih, P. C., Lin, C. H., Chokkalingam, U., Prakash, E., Kao, C. N., Chang, C. F., & Lin, W. L. (2024). The Aloe vera acemannan polysaccharides inhibit phthalate-induced cell viability, metastasis, and stemness in colorectal cancer cells. *Ecotoxicology and environmental safety*, 288, 117351. <https://doi.org/10.1016/j.ecoenv.2024.117351>

97. Ren, Q., Chen, J., Wesseling, S., Bouwmeester, H., & Rietjens, I. M. C. M. (2024). Physiologically based Kinetic Modeling-Facilitated Quantitative *In Vitro* to *In Vivo* Extrapolation to Predict the Effects of Aloe-Emodin in Rats and Humans. *Journal of agricultural and food chemistry*, 72(29), 16163–16176. <https://doi.org/10.1021/acs.jafc.4c00969>

98. Shin, B., Hillyer, T., & Shin, W. S. (2024). Rational Design and Testing of Antibacterial Aloe Vera Hemostatic Hydrogel. *Gels (Basel, Switzerland)*, 10(6), 409. <https://doi.org/10.3390/gels10060409>

99. Hayes, A. W., Pressman, P., Clemens, R., Singer, A. W., & Bauter, M. R. (2024). Evaluation of 90-day repeated dose oral toxicity of an aloe vera inner leaf gel beverage. *Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association*, 189, 114726. <https://doi.org/10.1016/j.fct.2024.114726>

100. Hassan, R. E., Saleh, E. M., & Hamdy, G. M. (2025). Aloe vera gel relieves cadmium triggered hepatic injury via antioxidative, anti-inflammatory, and anti-apoptotic routes. *Biological trace element research*, 203(1), 218–228. <https://doi.org/10.1007/s12011-024-04141-4>

101. Elkomy, N. M. I. M., El-Shaibany, A., Elnagar, G. M., Abdelkhalek, A. S., Al-Mahbashi, H., Elaasser, M. M., Raweh, S. M., Aldiyarbi, M. A., & Raslan, A. E. (2023). Evaluation of acute oral toxicity, anti-diabetic and antioxidant effects of Aloe vera flowers extract. *Journal of ethnopharmacology*, 309, 116310. <https://doi.org/10.1016/j.jep.2023.116310>

102. Ghosh, A., Saha, K., Bhattacharya, T., Sarkar, S., Sengupta, D., Maiti, A., Ghoshal, D., Dey, S., & Chattopadhyay, D. (2024). Electrospun Cerium Oxide Nanoparticle/Aloe Vera Extract-Loaded Nanofibrous Poly(Ethylene Oxide)/Polyurethane Mats As Diabetic Wound Dressings. *ACS applied bio materials*, 7(8), 5268–5278. <https://doi.org/10.1021/acsabm.4c00475>

103. Ren, Q., Chen, J., Wesseling, S., Bouwmeester, H., & Rietjens, I. M. C. M. (2024). Physiologically based Kinetic Modeling-Facilitated Quantitative *In Vitro* to *In Vivo* Extrapolation to Predict the Effects of Aloe-Emodin in Rats and Humans. *Journal of agricultural and food chemistry*, 72(29), 16163–16176. <https://doi.org/10.1021/acs.jafc.4c00969>

104. Nauroze, T., Ali, S., Andleeb, S., Ara, C., Liaqat, I., Mushtaq, H., Mumtaz, S., Kanwal, L., Abbas, A. S., Mumtaz, S., Farooq, M. A., & Khan, I. H. (2024). Therapeutic Potential of Aloe vera and Aloe vera-Conjugated Silver Nanoparticles on Mice Exposed to Hexavalent Chromium. *Biological trace element research*, 202(12), 5580–5595. <https://doi.org/10.1007/s12011-024-04105-8>

105. Hassan, R. E., Saleh, E. M., & Hamdy, G. M. (2025). Aloe vera gel relieves cadmium triggered hepatic injury via antioxidative, anti-inflammatory, and anti-apoptotic routes. *Biological trace element research*, 203(1), 218–228. <https://doi.org/10.1007/s12011-024-04141-4>

106. Gupta, V. K., Park, U., Siddiqi, N. J., Huh, Y. S., & Sharma, B. (2023). Amelioration of Hepatotoxic and Neurotoxic Effect of Cartap by *Aloe vera* in Wistar Rats. *Toxics*, 11(5), 472. <https://doi.org/10.3390/toxics11050472>

107. Kweon, D. Y., Song, H. J., Kim, J. E., Jin, Y. J., Roh, Y. J., Seol, A., Park, J. M., Lee, E. S., Choi, W. S., & Hwang, D. Y. (2023). Therapeutic Effects of *Aloe saponaria* against Ulcerative Colitis Induced by Dextran Sulfate Sodium. *Current issues in molecular biology*, 45(2), 1483–1499. <https://doi.org/10.3390/cimb45020096>

108. Hu, Y. H., Quan, Z. Y., Li, D. K., Wang, C. Y., & Sun, Z. X. (2022). Inhibition of CYP3A4 enhances aloe-emodin induced hepatocyte injury. *Toxicology in vitro : an international journal published in association with BIBRA*, 79, 105276. <https://doi.org/10.1016/j.tiv.2021.105276>

109. Hoogenboom, T. C. H., Patel, N., Cook, N. A., Williams, R., Taylor-Robinson, S. D., & Lim, A. K. P. (2020). The Effect of Aloe Vera Juice on Liver Enzymes and Hepatic Structure in a Healthy Population. *Integrative medicine (Encinitas, Calif.)*, 19(3), 30–34.

110. Gupta, V. K., Kumar, A., Pereira, M. L., Siddiqi, N. J., & Sharma, B. (2020). Anti-Inflammatory and Antioxidative Potential of *Aloe vera* on the Cartap and Malathion Mediated Toxicity in Wistar Rats. *International journal of environmental research and public health*, 17(14), 5177. <https://doi.org/10.3390/ijerph17145177>

111. Liu, D. M., Yang, D., Zhou, C. Y., Wu, J. S., Zhang, G. L., Wang, P., Wang, F., & Meng, X. L. (2020). Aloe-emodin induces hepatotoxicity by the inhibition of multidrug resistance protein 2. *Phytomedicine : international journal of phytotherapy and phytopharmacology*, 68, 153148. <https://doi.org/10.1016/j.phymed.2019.153148>